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What is 3DGS？

 Gaussian Splatting is an effective method for representing 3D scenes with novel-view
synthesis capability. This approach is notable for its speed, without compromising on the
rendering quality. Originally, 3D Gaussians are initialized from a sparse SfM point cloud of
a scene. Having a set of images observing the scene from different angles, the Gaussian
parameters are optimized using differentiable rendering while 3D Gaussians are adaptively
added or removed to the representation based on a set of heuristics.

 高斯抛雪球是一种用于表示具有新视角3D场景合成的方法。该方法以其速度而著称，同时
不损害渲染质量。3D高斯是从场景的稀疏SfM点云中初始化的。在一组从不同角度观察场
景的图像的情况下，使用可微分渲染(前向渲染，光栅化)来优化高斯参数，同时根据一组启
发式规则自适应地添加或删除3D高斯以进行更新。



What is 3DGS？

 Representing the scene with 3D Gaussians using the sparse point cloud from SfM;
 Performing interleaved optimization/density control of the 3D Gaussians, optimizing

anisotropic covariance;
 Developing a fast visibility-aware rendering algorithm (tile-based splatting);

Limitations:
 Artifacts in the regions where the scene is not well observed;
 Memory consumption is significantly higher than NeRF-based solutions;
 Having popping artifacts when our optimization creates large Gaussians;
 Elongated artifacts or “splotchy” Gaussians



Implementation 3DGS in C++

 Fully in C++ and CUDA 11.7;
 LibTorch Framework;
 Python with development headers;
 Cmake 3.22 or higher;
 SIBR_viewers for visualization;

(6000 Iters) GPU3090 (cpp) GPU3060 (cpp) GPU3090 (py)
Train 265s / psnr:21.28 277s / psnr:21.30 452s / psnr: 20.13
Truck 189s / psnr:23.79 343s / psnr:23.86 535s / psnr: 23.89

https://www.bilibili.com/video/BV1ft42147yd/?spm_id_from=333.788&vd_source=a88e426798937812a8ffc1a9be5a3cb7
https://www.bilibili.com/video/BV1XF4m157x8/?spm_id_from=333.788&vd_source=a88e426798937812a8ffc1a9be5a3cb7


Image-based 3DGS



GS-SLAM: Dense Visual SLAM with 3D 
Gaussian Splatting

 The first one utilizes 3DGS for SLAM for pose tracking (coarse-to-fine) and RGB-D rendering;
 Adaptive expansion strategy that adds / deletes 3D Gaussian;



GS-SLAM: Dense Visual SLAM with 3D Gaussian 
Splatting

 The rendering speed has reached 386 FPS, but the overall performance of the SLAM
framework, with a running speed of 8.34 FPS, and the localization accuracy, hasn't seen a
significant improvement;

 Memory consumption is too large!



SplaTAM: Splat, Track & Map 3D Gaussians for 
Dense RGB-D SLAM

 Introducing several simple modifications that make splatting even faster; while the
contribution 2~4 is the advantages of using 3DGS;

 Unobserved/novel camera viewpoint—— new evaluation metrics;



Gaussian Splatting SLAM

 The first application of 3D Gaussian Splatting to incremental 3D reconstruction using a single
moving monocular or RGB-D camera; Can reconstruct the tiny and even transparent objects;

 Formulating the analytic Jacobian of camera pose with respect to a 3D Gaussians map,
enable camera poses to be optimized alongside scene geometry;

 Introducing the novel Gaussian shape regularization to ensure geometric consistency;
 Propose a novel Gaussian resource allocation and pruning method to keep the geometry clean

and enable accurate camera tracking



Gaussian Splatting SLAM

 In the monocular scenario, its performance is comparable to most of RGB-D methods, while
in the RGB-D case, it is nearly on par with ORB-SLAM2.



Gaussian-SLAM

 Proposing a novel effective strategy for seeding new Gaussians for newly explored areas;
 Dividing the scene into many submaps, so that they can be independently optimized and do

not need to be kept in memory;
 Deeply analysis the limitations of 3DGS (original version);



Gaussian-SLAM: Photo-realistic Dense SLAM 
with Gaussian Splatting

 Novel strategies for seeding and optimizing 3DGS with proposed online learning method;
 Investigating frame-to-model tracking with Gaussian splatting via photometric error

minimization
 An extension of Gaussian splatting to better encode geometry;

 Pinpoint the original offline 3DGS fails or prove ineffective:
 Seeding strategy for online SLAM builds upon a sparse point cloud, which is uncertainty;
How many Gaussian should be considered for optimization (too slow or Catastrophic 

forgetting)?
The result of a splatting optimization highly depend on the initialization of Gaussians; 

Gaussians may grow suddenly in different directions depending on the neighboring 
Gaussians; the inherent symmetries of the 3D Gaussians allow parameter alterations without 
affecting the loss function, resulting in non-unique solutions;

While good view coverage in an offline setting constrains most Gaussians well, novel views in 
a sparse-view SLAM setting often contain artifacts resulting from previously under-
constrained Gaussians.

Limited geometric accuracy;



Gaussian-SLAM: Photo-realistic Dense SLAM 
with Gaussian Splatting

 While the performance in terms of localization accuracy is mediocre in this paper, the mapping
results are excellent. Moreover, it provides a thorough analysis of the issues present in 3DGS,
offering valuable insights.



Photo-SLAM: Real-time Simultaneous Localization and 
Photorealistic Mapping for Monocular, Stereo, and RGB-D Cameras

 A Hyper primitives map which is composed of point clouds storing ORB features, rotation,
scaling, density, and spherical harmonic (SH) coefficients;

 The hyper primitives map allows the system to efficiently optimize tracking using a factor graph
solver and learn the corresponding mapping by backpropagating the loss between the original
images and rendering images. The images are rendered by 3D Gaussian splatting;

 A Gaussian-Pyramid-based training method to progressively learn multi-level features,
enhancing photorealistic mapping performance;

 Simultaneously exploit explicit geometric features for localization and learn implicit
photometric features to represent the texture information of the observed environment; The
render speed is up to 1000 FPS;



Photo-SLAM

 ORB-SLAM+3DGS (monocular, stereo, and RGB-D), Cpp-version, using libtorch;
 Hyper primitives map which is composed of point clouds storing ORB features, rotation,

scaling, density, and spherical harmonic (SH) coefficients;
 Efficiently optimize tracking using a factor graph solver and learn the corresponding

mapping by backpropagating the loss between the original images and rendering images;
 To achieve high-quality mapping without reliance on dense depth information, propose a

geometry-based densification strategy and a Gaussian-Pyramid-based (GP) learning
method;



Photo-SLAM: Real-time Simultaneous Localization and 
Photorealistic Mapping for Monocular, Stereo, and RGB-D Cameras



Compact 3DGS

To solve the problem of requiring a large

amount of memory and storage:

 Learnable mask strategy to identifies and

removes non-essential Gaussians (Volume as

well as transparency);

 Employing grid-based neural field (hash-based)

to represent the view-dependent color rather

than SH;

 Learn codebooks to represent geometric

attributes of Gaussian;



4D Gaussian Splatting

4D NeRF are expected to show consistent
appearance, geometry, and motions from
arbitrary viewpoints, while the 4DGS is also
proposed to generate dynamic scenes;
 3DGS+deformation MLP network (learn how

to deform the static 3DGS at different time
stamps);

 Considering the spacetime as an entirety, 
integrating the 3D Gaussian with temporal 
extension into 4D Gaussian; 4D Gaussian can
be decomposed into a conditional 3D Gaussian
and a marginal 1D Gaussian (temporal);

 Formulate the 4D scene as a set of deformable
3D Gaussian points;



SGS-SLAM: Semantic gaussian splatting for 
neural dense slam

 First semantic dense visual SLAM system
grounded in 3D Gaussians;

the semantic color associated with the Gaussian



SemGauss-SLAM: Dense Semantic Gaussian 
Splatting SLAM

 Nothing new;



High-Fidelity SLAM Using Gaussian Splatting with Rendering-
Guided Densification and Regularized Optimization

 Gaussian densification strategy based on the rendering loss to map unobserved areas and
refine reobserved areas;

 Regularization, re-rendering loss;



NEDS-SLAM (Semantic 3DGS SLAM)

 Encoder-decoder to compress the high-dimensional semantic features into a compact 3D
Gaussian representation;

 Virtual Camera View (just like sliding window) Pruning method to eliminate outlier GS points;
 Combines the appearance features estimated by DepthAnything with the semantic features

extracted from pretrained model;
 Deeply describe the SplaTAM updating process; Using similar scheme to pruning Gaussians as

MonoGS;



MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for 
SLAM Using Vision, Depth, and Inertial Measurements

 VIO + 3DGS: depth and IMU pre-integration for pose optimization;
 Integrating inertial measurements and depth estimates from an unposed monocular RGB or

RGB-D camera into SLAM framework using 3D Gaussians for scene representation;



Compact 3D Gaussian Splatting For Dense Visual 
SLAM

 To address he critical high memory demand and slow training speed issue;
 A sliding window-based masking strategy is first proposed to reduce the redundant ellipsoids;
 Novel geometry codebook to compress 3D Gaussian geometric attributes;



CG-SLAM: Efficient Dense RGB-D SLAM in a
Consistent Uncertainty-aware 3D Gaussian Field

 A scale regularization;
 A novel depth uncertainty model is proposed to ensure the selection of valuable Gaussian

primitives during optimization;



RGBD GS-ICP SLAM

 GICP+3DGS with keyframe selection methods;
 Use G-ICP to align the current frame with the 3D GS map which contains covariance (solely

need to compute the covariance for the current frame);
 When adding keyframes to the 3D GS map, utilize the covariance computed in GICP during

tracking (no need for densifying or opacity reset);



3DGS-ReLoc: 3D Gaussian Splatting for Map 
Representation and Visual ReLocalization

 By leveraging LiDAR data to initiate the training of the 3D Gaussian Splatting map, the
system constructs maps that are both detailed and geometrically accurate;

 The combination of 2D voxel map and KD-tree to mitigate memory usage and facilitate rapid
spatial queries;

 For visual localization tasks;



HGS-Mapping: Online Dense Mapping Using 
Hybrid Gaussian Representation in Urban Scenes

 Hybrid Gaussian Representation, which is comprised of Sphere Gaussian, 3D Gaussian, and 2D
Gaussian Plane components;

 Implementing an adaptive update method for Gaussians, which dynamically densifies Gaussians
based on the reconstruction loss and prunes the Gaussians of low importance;



RTG-SLAM: Real-time 3D Reconstruction at Scale 
Using Gaussian Splatting

 Each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the
surface and dominant colors, and transparent ones fitting residual colors; Letting a single
opaque Gaussian well fit a local surface region without the need of multiple overlapping
Gaussians, hence largely reducing the memory and computation cost;

 Categorizing Gaussians into stable and unstable ones; Only optimizing the unstable Gaussians
and only render the pixels occupied by unstable Gaussians;

 Frame-to-model ICP for tracking;



Results from the paper

 https://gapszju.github.io/RTG-SLAM/

https://gapszju.github.io/RTG-SLAM/


MGS-SLAM: Monocular Sparse Tracking and Gaussian 
Mapping with Depth Smooth Regularization

 The sparse visual odometry tracks camera poses in RGB stream, while Gaussian Splatting
handles map reconstruction;

 The fifth monocular Mono-GS: MVS depth estimation network + Sparse-Dense Adjustment
Ring (scale consistency);



Monocular Gaussian SLAM with Language 
Extended Loop Closure

 Monocular RGB (DPVO)+language-extended loop closure module;
 Training the 3DGS with history keyframes within a sliding window;



Supasses RGB-D



Results



Results from the paper

Ji, Yiming, et al. "NEDS-SLAM: A Novel Neural Explicit Dense Semantic
SLAM Framework using 3D Gaussian Splatting." arXiv preprint
arXiv:2403.11679 (2024).
Sun, Lisong C., et al. "MM3DGS SLAM: Multi-modal 3D Gaussian Splatting
for SLAM Using Vision, Depth, and Inertial Measurements." arXiv preprint
arXiv:2404.00923 (2024).



Dngaussian: Optimizing sparse-view 3d gaussian radiance 
fields with global-local depth normalization

 3DGS encounters degradation when input views decrease;
 Restoring accurate scene geometry under coarse monocular depth supervision while maintaining

a fine-grained color appearance;
 Exploring distilling depth information from pre-trained monocular depth estimators to rectify the

Gaussian fields of the ill-learned geometry, and pursue higher quality and efficiency for few-
shot novel view synthesis;



NGM-SLAM: Gaussian Splatting SLAM with 
Radiance Field Submap

 Utilizing neural radiance field + 3DGS, for large-scale scene and loop correction;
 Constructing submaps based on image stream using NeRF, the neural submaps are utilized to

construct Gaussian;



2DGS
 3DGS evaluates a Gaussian’s value at the intersection between a pixel ray and a 3D Gaussian,

which leads to inconsistency depth when rendered from different viewpoints;
 2DGS represents the 3D scene with 2D Gaussian primitives, 2D splatting process utilizing ray-

splat intersection and rasterization, while incorporate depth distortion and normal consistency
terms to further enhance the quality of the reconstructions;



2DGS vs 3DGS



2DGS vs 3DGS



2DGS vs 3DGS



2DGS vs 3DGS



Fast-LIVO2

https://www.youtube.com/watch?v=aSAwVqR22mo


MotionGS : Compact Gaussian Splatting SLAM 
by Motion Filter

 A fusion of deep visual feature, dual keyframe selection and 3DGS;
 Pose tracking is achieved by feature extraction and direct pose optimization on each frame;
 Motion filter performs feature extraction on each frame and only retains frames that exceed

the threshold (Like DROID-SLAM);
 The coarse-to-fine pose estimation and compact Gaussian scene representation are

implemented by dual keyfeature selection and novel loss functions;



DGS-SLAM: Gaussian Splatting SLAM in Dynamic 
Environment

 The first dynamic SLAM framework built on 3DGS;
 Developing based on the Gaussian Splatting SLAM (aka. The MonoGS) with a robust filtering

process to handle dynamic objects;
 Introducing a mask generation method that enforces photometric consistency across keyframes,

reducing noise from inaccurate segmentation and artifacts such as shadows;
 Proposing loop-aware window selection mechanism, which utilizes unique keyframe IDs of 3D

Gaussians for loop detection;



Performance of removing dynamic objects

 Efficiently removing the dynamic object (through
the online segmentation with robust mask);

 For the segmentation mask, the authors leverage Track
Anything, an open-vocabulary video segmentation module
that operates online;

 The loop-aware keyframe insertion is just for consistency
of the global Gaussian map;



Tracking Performance in Dynamic Environment

 The tracking pose is optimized by
minimizing the difference between
each input frame and the rendered
result;

 The baseline (MonoGS) and SplaTAM
often fail in dynamic scene;

 Bonn dataset is more complex and
captured in larger scenes with various
dynamic movements;

 The time analysis requiring excluding
the time spent on semantic
segmentation;



Gassidy: Gaussian Splatting SLAM in Dynamic 
Environments

 Designing photometric geometric loss function, also based on MonoGS with the YOLO
segmentation;

 To distinguish and filter environmental disturbances, the authors iteratively analyze rendering
loss flows to detect features characterized by changes in loss values between dynamic objects
and static components;

 One loss design three contributions (just a good writer );

Utilizing both errors for tracking 
and mapping at the beginning, based 
on the loss difference, filtering out 

the dynamic object.
(For misleading reader)

photometric geometric loss function

The loss for the background and static objects decreases consistently 
over iterations as they become well-aligned with the scene geometry. 
In contrast, dynamic objects exhibit higher and more fluctuating loss 

values across iterations due to their motion;
Simply speaker: YOLO only segment objects and the author used 

complex ways for further filtering;



Mapping and Tracking Performance



DG-SLAM: Robust Dynamic Gaussian Splatting 
SLAM with Hybrid Pose Optimization

 Dynamic 3DGS-SLAM with motion mask generation (modified based on a CVPR23 work,
considering the warp depth mask); 

 Hybrid camera tracking algorithm: Droid-SLAM to provide initial pose estimation and
devise coarse-to-fine optimization for pose tracking;

 Adaptive Gaussian point management, including addition and pruning (unconcern);



The Mapping Performance



The Tracking Performance

 The Improvement of the Tracking is not obvious when comparison the DGS-SLAM and
Gassidy, consider the proposed hybrid pose tracking scheme;



HI-SLAM2: Geometry-Aware Gaussian SLAM for 
Fast Monocular Scene Reconstruction

 Monocular RGB learning-based dense SLAM to generate depth, and then using it for 3DGS
as map representation;

 Enhancing geometry estimation by combining monocular geometry priors with learning-based
dense SLAM, while leveraging 3DGS as compact map representation for efficient and
accurate scene modeling;

 Adapting loop closure to ensure the global consistency;
 Grid-based scale alignment strategy to maintain the scale consistency of the estimated depth;

RGB-only methods▲, and RGB-D methods



VINGS-Mono: Visual-Inertial Gaussian Splatting 
Monocular SLAM in Large Scenes

 Monocular (inertial) 2D Gaussian Splatting SLAM framework designed for large scenes, supporting kilometer-scale
large scenes and mobile app;

 To address storage and optimization efficiency, a score manager (contribution and error) is developed to manage (prune)
the 2D Gaussian Map by integrating local and global map representations;

 A sample rasterizer to significantly accelerate the backpropagation algorithm of Gaussian Splatting;
 A single-to-multi pose refinement module (GS-based pose refinement) back-propagates rendering errors from a single

frame to optimize the poses of all frames within the frustum’s field of view (different keyframe), improving overall pose
consistency;

 Loop Closure module leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure
detection and correction of the Gaussian map (simultaneously adjusting millions of Gaussian attributes (actually just
position and rotation) upon detecting a loop);

 Dynamic Eraser to address the inevitable presence of dynamic objects;



VINGS-Mono
 The visual front-end is build based on DBA-Fusion;
 While the mapping is modified from the 2DGS, such as score manager, sample rasterizer, single-to-

multi pose refinement;
 Leveraging the novel view synthesis capabilities of GS from new viewpoints to determine if a loop

has been detected (based on the “Lightglue”), the loop detection problem is transformed to
whether the newly captured image can serve as a novel viewpoint of the Gaussian Map;

 Heuristics-guided segmentation method to distinguish masks of dynamic objects, building based on
“Fast segment anything” and redesigning the re-rendering loss;



Performance of VINGS-Mono



Performance of VINGS-Mono



VIGS SLAM: IMU-based Large-Scale 3D 
Gaussian Splatting SLAM

 RGB-D and IMU sensors for large-scale indoor environments, build based on GS-ICP SLAM;
 ICP-based tracking framework that combines IMU pre-integration to provide a good initial

guess for accurate pose estimation;



RGBDS-SLAM: A RGB-D Semantic Dense SLAM 
Based on 3D Multi Level Pyramid Gaussian Splatting

 A RGB-D semantic dense SLAM system based on 3D multi-level pyramid gaussian splatting,
which uses multi-level image pyramid to extract rich detail information at different resolution
levels and perform gaussian splatting training;

 Built on Photo-SLAM (also with multi-level
pyramid) with a tightly coupled multi-features
reconstruction optimization, which reasonably
couples RGB, depth, and semantic features through
various constraints;



Performance of RGBDS-SLAM
 Built on Photo-SLAM (just add the semantic on photo-SLAM);



OpenGS-SLAM: Open-Set Dense Semantic SLAM with 3D 
Gaussian Splatting for Object-Level Scene Understanding

 3DGS for dense semantic (object-level) SLAM in open-set
environments, incorporates 2D semantic label to 3D explicit
semantic label to each Gaussian;

 To solve the non-differentiable nature of the semantic
label attribute, Gaussian voting splatting is proposed for fast
2D label map rendering and scene updating;

 Confidence-based 2D label consensus method is designed for
consistent labeling across multiple views;

 Segmentation Counter Pruning strategy;



OpenGS-SLAM
 Not require any predefined semantic categories;



FGS-SLAM: Fourier-based Gaussian Splatting for 
Real-time SLAM with Sparse and Dense Map Fusion

 Uncertainty in gaussian position and initialization parameters introduces challenges for
3DGS. Thus, introducing adaptive densification method based on Fourier frequency
domain analysis to establish gaussian priors for rapid convergence.

 Map-sharing mechanism, the sparse map is for efficient GICP pose tracking, and dense
map for high-fidelity visual representations;

 First SLAM system leveraging frequency domain analysis for gaussian initialization
with 36 FPS;



FGS-SLAM Performance



GI-SLAM: Gaussian-Inertial SLAM

 Gaussian-inertial SLAM system which
consists of an IMU-enhanced camera
tracking module and 3D Gaussian-based
scene representation for mapping (VIO +
3DGS);

 It seems that this work is built based on
MonoGS for monocular, stereo, and RGBD
cameras, both with and without IMU
integration;

 Introducing IMU loss function, which, when
combined with the photometric loss
function, improves the camera tracking;



Performance of GI-SLAM



4D Gaussian Splatting SLAM

 Incrementally tracks camera poses and establishes the 4D Gaussian radiance fields with RGB-
D images;

 Instead of treating dynamic objects as noise or distractors, the proposed method explicitly 
models temporal variations of the 3D Gaussian ellipsoids;

 Integrating YoLov9 to divide the primitives into static and dynamic Gaussians,  using 
MonoGS and static Gaussians for tracking;

 Using MLP for modeling the motion of the dynamic Gaussians, using the RAFT to provide
constraint to learn the motion of the dynamic Gaussians;



LiDAR-based 3DGS



Street Gaussians for Modeling Dynamic 
Urban Scenes

 Modeling dynamic urban street scenes from monocular videos
 The dynamic urban street is represented as a set of point clouds equipped with semantic logits

and 3D Gaussians (utilizing the point clouds to build dynamic scenes);
 The point cloud of each foreground object vehicles is optimized with optimizable tracked poses,

along with a dynamic spherical harmonics model for the dynamic appearance;
 Developing a tracked pose optimization strategy based on the proposed scene representation

(need optimizable input pose);



DrivingGaussian: Composite Gaussian Splatting for Surrounding 
Dynamic Autonomous Driving Scenes

 Incremental static 3D Gaussians and composite dynamic Gaussian graph for complex scene;
 Using LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and

maintain panoramic consistency; this is capable of recovering more precise geometry and
maintaining better multi-view consistency than utilizing point clouds generated by random
initialization or SfM;



LIV-GaussMap

 The initial poses for surface Gaussian scenes are obtained using a LiDAR-inertial system with
size-adaptive voxels. Then, we optimized and refined the Gaussians by visual-derived
photometric gradients to optimize the quality and density of LiDAR measurements;

 VoxelMap+3DGS;



LIV-GaussMap



MM-Gaussian: 3D Gaussian-based Multi-modal Fusion for 
Localization and Reconstruction in Unbounded Scenes

 Solid-state LiDAR+Camera+3DGS to precisely estimate the trajectory and incrementally 
reconstruct the 3D Gaussian map;

 Relocalization module that utilizes the capability of rendering images from Gaussians;
 All the lidar point in one frame are used to intallize the Gaussian;



TCLC-GS: Tightly Coupled LiDAR-Camera Gaussian 
Splatting for Surrounding Autonomous Driving Scenes

 TCLC-GS designs a hybrid explicit (colorized 3D mesh) and implicit (hierarchical octree
feature) 3D representation derived from LiDAR-camera data;

1. First learn and store implicit features in an octree-based hierarchical structure through encoding 
LiDAR geometries and image colors;

2. Then initialize 3D Gaussians in alignment with a colorized 3D mesh decoded from the implicit 
feature volume;



Gaussian-LIC: Photo-realistic LiDAR-Inertial-
Camera SLAM with 3D Gaussian Splatting

 Leveraging robust pose estimates from LiDAR-Inertial- Camera odometry, Coco-LIC;
 Initializing 3D Gaussians from colorized LiDAR points and optimize them using differentiable

rendering;
 To avoid LiDAR redundancy, first render a silhouette image from the current image view and

generate a mask M to select pixels that are not reliable from the current Gaussian map and tend
to observe new areas;

 The implementation details is very similar to ours;



GS-LIVO: Real-Time LiDAR, Inertial, and Visual 
Multi-sensor Fused Odometry with Gaussian Mapping

 IESKF-based LVI-odometry (developed based on Fast-LIVO2) utilizing the visual
measurement model based on the rendering of Gaussian maps;

 Global Gaussian map representation structured as a spatial hash-indexed octree;
 Incrementally maintains a sliding window of Gaussians with minimal graphics memory

usage, significantly reducing GPU computation and memory consumption by only optimizing
the map within the sliding window (new incremental update strategy), enabling real-time
optimization (NVIDIA Jetson Orin NX1 platform);



Performance of GS-LIVO



LiV-GS: LiDAR-Vision Integration for 3D Gaussian 
Splatting SLAM in Outdoor Environments

 The first method that directly aligns discrete and sparse LiDAR data with continuous
differentiable Gaussian maps in large-scale outdoor scenes;

 Gaussian-LiDAR alignment methods, including a normal direction constraint for stable tracking
and a density- and normal-consistency-based weighting mechanism to account for the reliability
of different Gaussians;

 Conditional Gaussian distribution constraint for map updates, allowing the propagation of
reliable Gaussians with LiDAR priors;



Performance of LiV-GS



LVI-GS: Tightly-coupled LiDAR-Visual-Inertial 
SLAM using 3D Gaussian Splatting

Project to the image plane

https://kwanwaipang.github.io/LVI-GS/


Our LVI-GS

 Link: https://kwanwaipang.github.io/LVI-GS/

https://kwanwaipang.github.io/LVI-GS/


Splat-LOAM: Gaussian Splatting LiDAR 
Odometry and Mapping

 LiDAR odometry and mapping pipeline that exclusively relies on 2D Gaussian primitives for its
scene representation;

 Employing spherical projection to encode LiDAR measurements into an image-like representation
so that it can be used to guide the Gaussian primitives optimization;

 Rely on keyframing to optimize local maps, and Frame-To-Model registration for tracking;



Performance of Splat-LOAM

 The evaluation of pose tracking is no obvious, without the ATE or quantitative comparison;
 While the mapping performance seems to be better than some baseline, but without

comparison with the LVI-odometry series (like R3LIVE, FAST-LVIO2);
 Nonetheless, the inspiration of this work is impressive;



Event-based 3DGS



EvGGS: A Collaborative Learning Framework for 
Event-based Generalizable Gaussian Splatting

 Reconstructing scenes as 3D Gaussians from only event input in a feedforward manner;
 This framework includes a depth estimation module, an intensity reconstruction module, and a

Gaussian regression module;
 Given a 360-degree event stream and target viewpoints, employ two submodules to extract the

depth and intensity information, which serve as the 3D position and color maps;



EvGGS: A Collaborative Learning Framework for 
Event-based Generalizable Gaussian Splatting



Event3DGS: Event-based 3D Gaussian Splatting 
for Fast Egomotion

 The first work to learn Gaussian Splatting solely from raw event streams;
 Within radiance field rendering, the inherent capability of event cameras to precisely capture

scene information at high temporal resolutions seamlessly aligns with the demands posed by
radiance field rendering in fast ego motion scenarios;

 It can reconstruct 3D structures under fast ego-motion through “just saying”, without any
evaluations or even using the real event data for evaluation;

 New event slicing strategy and handle the uniform radiance region where do not trigger events;
 Using colorful event (or add the blur images) as input, SfM-event for initialization, RGB as

target;



Event3DGS: Event-based 3D Gaussian Splatting 
for Fast Egomotion



EvaGaussians: Event Stream Assisted Gaussian 
Splatting from Blurry Images

 Integrating event streams to assist in reconstructing high-quality 3D-GS from blurry images;
 https://drexubery.github.io/EvaGaussians/ Novel synthetic dataset using Color DAVIS346;
 Event-based double integral (EDI) model achieves model-based image deblurring by

explicitly modeling the relationship between events triggered during the exposure time and the
captured blurry frames;

https://drexubery.github.io/EvaGaussians/


EvaGaussians: Event Stream Assisted Gaussian 
Splatting from Blurry Images



Ev3DGS: Event Enhanced 3D Gaussian Splatting 
from Blurry Images

 Utilizing the combined data from event cameras and standard RGB cameras to achieve image
deblurring and realize high-quality of novel view synthesis;

 Blur rendering loss: superimpose the clear images obtained by rendering multiple predicted
poses at equal time intervals under one viewpoint as the predicted blurred images, and
compare them with the input blurred images as the blur rendering loss (learn texture details);

 Event rendering loss: the generation process of predicted event data is simulated based on
the brightness change caused by the change of camera position and compared with the real
event data to get the event rendering loss (learn the motion information);

 Developed based on E2NeRF (ICCV2023) with simulated image blur and event data, also has
the real-world dataset captured by DAVIS 346;



Performance for both Ev3DGS and E2NeRF  



EventSplat: 3D Gaussian Splatting from Moving 
Event Cameras for Real-time Rendering

 Address the novel view synthesis challenge in the presence of fast motion, using event-only
rather than RGB images;

 An event-to-video guided SfM approach for initializing the 3DGS optimization process;
 Use of cubic spline trajectory interpolation for assigning camera poses to events at high rates;
 The key idea is to model changes in logarithmic image intensity (aka. Accumulated event);

 Computing the corresponding log-intensity changes by rasterizing two views from the
Gaussian scene representation;

Training 3DGS using event accumulated images
between two viewpoints, which represent relative
intensity images. Consequently, the model cannot
directly estimate absolute intensity images,
necessitating a linear transformation using
evaluation data as a reference.



Evaluation in the EDS and TUM-VIE dataset



Thank you
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